fast format for constructing sparse matrices
very fast conversion to and from CSR/CSC formats
fast matrix * vector (sparsetools)
no slicing, no arithmetics (directly)
facilitates fast conversion among sparse formats
when converting to other format (usually CSR or CSC), duplicate entries are summed together
- facilitates efficient construction of finite element matrices
create empty COO matrix:
>>> mtx = sparse.coo_matrix((3, 4), dtype=np.int8)
>>> mtx.todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
create using (data, ij) tuple:
>>> row = np.array([0, 3, 1, 0])
>>> col = np.array([0, 3, 1, 2])
>>> data = np.array([4, 5, 7, 9])
>>> mtx = sparse.coo_matrix((data, (row, col)), shape=(4, 4))
>>> mtx
<4x4 sparse matrix of type '<... 'numpy.int64'>'
with 4 stored elements in COOrdinate format>
>>> mtx.todense()
matrix([[4, 0, 9, 0],
[0, 7, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 5]])
duplicates entries are summed together:
>>> row = np.array([0, 0, 1, 3, 1, 0, 0])
>>> col = np.array([0, 2, 1, 3, 1, 0, 0])
>>> data = np.array([1, 1, 1, 1, 1, 1, 1])
>>> mtx = sparse.coo_matrix((data, (row, col)), shape=(4, 4))
>>> mtx.todense()
matrix([[3, 0, 1, 0],
[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])
no slicing...:
>>> mtx[2, 3]
Traceback (most recent call last):
...
TypeError: 'coo_matrix' object ...
Traceback (most recent call last):
...
TypeError: 'coo_matrix' object ...